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distinction of being truly die-sized, not “chip scale.” For 
WLPs, underfill is typically not applied. Since there exists 
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Figure 10. Polymer film/UBM delamination [15] 

For wafer level packages, PCB is considered as ‘part’ 
of the package since one cannot decouple the PCB from 
the WLP. PCB design plays an important role to assess 
the reliability of WLPs. With the conventional JEDEC 
board test set up and design, PCB trace cracks were often 
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between the silicon chip and PCB [19]. In Fig. 14, the 
per-cycle inelastic energy density is plotted against the 
location of solder balls in a diagonal direction for a 16×16 
array fan-out WLP package, in which 6×6 array solder 
balls are under die area. Fig. 14 shows that outermost ball 
right beneath silicon die has the maximum inelastic 
energy density among all balls. This is because the 
maximum local CTE mismatch is between silicon chip 
and the PCB. Thus the thermal stresses of solder balls 
beneath the chip are expected to be higher than the 
stresses on the outermost solder balls. The results show 
that fan-out WLP packages can extend the array size 
greatly while meeting thermo-mechanical reliability 
requirement.  
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three stacking schemes in 3D integration: chip-to-chip, 
chip-to-wafer, and wafer-to-wafer. Wafer-to-wafer 
technology can be applied for homogeneous integration of 
high yielding devices. Wafer-to-wafer bonding 
maximizes the throughput, simplifies the process flow, 
and minimizes cost. The drawback for this wafer-to-wafer 
method is the number of known-good-die (KGD) 
combinations in the stacked wafers will not be maximized 
when the device wafer yields are not high enough or not 
stable. In this case, chip-to-chip or chip-to-wafer will be 
adopted to ensure vertical integration with only good dies. 
Considering mass production in future, the chip-to-wafer 
and wafer-to-wafer technologies have gradually become 
the mainstream for 3D integration. 
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Figure 16. Image sensor WLP with TSV 

Wafer-level bonding/bonding/stacking technologies 
can be further differentiated by the method used to create 
TSVs: either via-first or via-last. The common definition 
for via-first and via-last is based on TSVs formed before 
and after BEOL process. TSV fabrication after the wafers 
are bonded, using a ‘‘drill and fill” sequence, is definitely 
via-last approach. Whereas via-first and pre-bonding 
vialast approaches, building TSVs on each wafer prior to 
the bonding process are generally more efficient and cost-
effective. The leading wafer-level bonding techniques 
used in 3D integration include adhesive bonding (polymer 
bonding), metal diffusion bonding, eutectic bonding, and 
silicon direct bonding [26]. The future development will 
reply on the full integration of fan-out technology, WLP, 
and vertical 3D interconnect technology together.  

5. Conclusions 
Conventional fan-in WLPs are a unique form of 

packages and have the distinction of being truly die-sized, 
not “chip-scale’. With fan-out WLP technologies 
emerging, expensive substrate process can be eliminated. 
For fan-in WLP, the RDL build-up stacks or copper 
post/epoxy stacks serve as stress buffer to reduce solder 
ball stresses significantly. However, the failure mode may 
shift to the failures in stack-up layers. For fan-out WLP, 
the die-size is no longer a limiting factor for WLP 
reliability. Instead, several challenges in wafer 
reconstitution process arise. Moisture sensitivity becomes 
a coneren in fan-out WLP development. The integration 
of fan-out (wafer reconstitution), WLP, and TSV will 
truly realize system integration in future.  
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